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Abstract
One of the major public health issues in Ethiopia is malaria. From the total population about 4-5 million Ethiopians affected each year. The objective of this study 
is to identify the dependence of malaria situation on spatial factors and socio-economic, demographic and geographic variables. The investigation in this study uses 
the household cluster malaria survey which was conducted from December 2006 to January 2007. Geo-additive Bayesian model using Kebele as the geographic 
unit of the study was used. From the investigation, it can be seen that households in the SNNP region were found to be at more risk than Amhara and Oromiya 
regions. Households with better facilities including bed nets have less chance to be infected by malaria. The study also suggested that including spatial variability 
is essential to understand and plan the most suitable policies to decrease the threat of malaria. Semi-parametric models were used to modeling the effects of socio-
economic, demographic and geographic covariates and spatial effects on malaria distribution in Ethiopia. The results recommend the strong positive relations 
between malaria rapid diagnosis test and socio-economic, demographic and geographic factors. The spatial variability showed important spatial patterns of malaria.
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Introduction
The relationship between malaria and socio-economic status 

in Ethiopia dictated the use of a spatial model to identify the risks. 
About 4-5 million people are affected by malaria because most 
(75%) of Ethiopia is malarious during the rainy season. Currently, 
strong associations between malaria and climate; and demographic, 
geographic and socio-economic factors have been found. A further 
significantly positively correlated relationship between the number of 
malaria cases, temperature and rainfall was documented by Pemola 
and Jauhari in 2006 [1-3]. 

A number of researchers examining the same topic indicated that 
factors other than climate may explain the distribution of malaria [4-
6]. For instance, Ayele, Zewotir and Mwambi (2012, 2013, 2014. 2015) 
noted high rates of malaria morbidity could result from poor access to 
socio-economic services. Consequently, the problems are associated 
with key socio-economic, demographic and geographic factors, and 
in particular, with poverty levels of households [7-11]. In addition 
to this, environmental factors, population growth, limited access to 
healthcare systems, and lack of unsuccessful malaria control measures 
contribute to malaria transmission [12]. 

In previous studies malaria risk factors were examined using 
spatial statistics analysis and semiparametric methods separately 
[13,14]. But, the factors affecting malaria RDT result might have 
both spatial variability and nonlinear relationships with malaria RDT 
result. These effects were not done previously. Therefore, in this study, 
a geo-additive model is suggested to identify the risk factors of malaria 
on spatial effects and socio-economic, demographic and geographic 
factors in three regions of Ethiopia. The method incorporates both the 
spatial variability and the nonlinear relationships between covariates 
and response variables.

Methods 
Study area 

Ethiopia’s land size is estimated to be about 1.1 million square 
kilometers. The country is the Federal Democratic Republic 
divided into nine national regional states. These are: Tigray, Afar, 
Amhara, Oromia, Somali, Benishangul-Gumuz, Southern Nations 
Nationalities and People Region (SNNPR), Gambella and Harari 
and two administrative regions (Addis Ababa City administration 
and Dire Dawa City Council). From these eleven regions, Amhara, 
Oromiya and SNNP regions constitute more than 58% of the total 
size of Ethiopia. The Amhara region is found in the north western 
and north central part of Ethiopia. This region has ten administrative 
zones, one special zone, 105 woredas, and 78 urban centres. The region 
is divided into the highlands and lowlands. The highlands (northern 
and eastern parts of the region) are 1500 meters above sea level and 
are characterized by chains of mountains and plateaus. The region of 
Oromiya covers the biggest portion of the country. This region has of 
twelve administrative zones and 180 woredas. The landscape of the 
region includes tall and rocky mountains. The region is located 500 
meters above sea level to high ranges that culminate into more than 
4000 meters. But the altitude of over 1500 meters is dominant in the 
region. The region of Southern Nations, Nationalities and Peoples’ 
comprises 10% of the total area of the country. The region is divided 
in to nine zones, 72 woredas and five special woredas. The region lies 
in the southern part of the country and has an elevation range from 
376 to 4, 207 meter above sea level. About 56 % of the total area is 
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found below 1,500m. The remaining 44% is temperate in climate. 
These three regions were selected for this study. 

Data description 

The aim of the study was to identify the problem of malaria 
on aspects, such as socio-economic, demographic and geographic 
variables and spatial correlated and uncorrelated spatial effects in 
three regions of Ethiopia. Baseline household survey was conducted 
from December 2006 to January 2007 by The Carter Center (TCC). In 
the survey, Kebele (smallest administrative unit) was considered as the 
sampling frame in each of the rural populations of Amhara, Oromiya 
and SNNP regions. From the three regions, 5,708 households located 
in 224 clusters were selected, i.e, 4,101 (71.85%) for Amhara, 809 
(14.17%) for Oromiya and 798 (13.98%) for SNNP. From each Kebele, 
twelve even numbered households were selected for malaria tests.

Socioeconomic, demographic and geographic factors of 
interest

Outcome variable: For this study, the malaria rapid diagnosis test 
(RDT) result (binary) was considered as an outcome variable. RDT 
is a method which helps to the diagnosis of malaria. RDT are used 
instead of microscopy if there are no good quality services. 

Predictor variables: The predictor variables or covariates were the 
baseline socioeconomic status, demographic and geographic variables. 
These variables are described in the following table (Table 1).

Model construction 

In previous studies, assuming that socioeconomic, demographic 
and geographic variables were assumed to have a nonlinear effect on 
malaria rapid diagnosis test [15-17]. Because age, household size, 
number of rooms per person, number of nets per person, altitude and 
number of months the room sprayed are continuous variables, the 
relationship with malaria rapid diagnosis test might be nonlinear [14]. 
In addition to nonlinear effects, there was spatial variability was found 
in the previous study [13]. Therefore, using the algorithm described 
in [18], Generalized Additive Mixed Model (GAMM) with spatial 
covariance structure [19] was suggested to investigate the effect of 

malaria rapid diagnosis test on socioeconomic, demographic and 
geographic variables.
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Where  itη  is the predictor of malaria RDT, age it is age, ALT it
is altitude, FSIZE it is Family size and TR it  is total room, TN it total 
number of nets and MS it  is months the room sprayed with indoor 
residual spray. G it ,R it ,W it ,TW it ,TF it ,E it ,TV it ,RD it ,RF it RW

it ,RR it ,AM it and NU it are gender, region, source of drinking water, 
time to get water, toilet facility, availability of electricity, availability 
of television, availability of radio, material of room’s floor, material 
of room’s wall, material of room’s roof, indoor residual spray and use 
of nets respectively. 1 f . . ., 6 f are unidentified nonlinear smooth 
functions of the predictors. The  iβ  ( ) 1,...,16i =  are the regression 
coefficient of the linear effects. 0 iβ is the intercept and it i∈  is the 
error term [14] . 

The purpose of equation (1) was to assess the socioeconomic, 
demographic and geographic effects that are highly related with 
malaria RDT in three regions of Ethiopia. In this study, spatial 
variability was not included. As an extension of study conducted by 
Ayele, Zewotir and Mwambi (2014), the GAMM in equation (1) is 
Substituted by a geo-additive model by accommodating the spatial 
variability as follows.
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In equation 2, 1 f  . ., 6 f are nonlinear smooth functions of the 
continuous predictor variables and  spatf  the influence of the spatial 
predictor for kebele i . The spatial effect  spatf can be divided into 
two parts, i.e., correlated/structured and uncorrelated/unstructured 
effects. The spatial effects can be expressed as follows.

       ( ) ( ) ( ) (3)spat i str i unstr if k f k f k= +
Here, spatial variability is usually contained many unobserved 

influences exist only locally [26-31,33]. Therefore, equation (2) can be 
written as
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The assumption for geo-additive model states that the nonlinear 
variabilities are similar for all kebeles.

Prior assumptions and inference 

For the case of Bayesian inference, the unidentified functions

. . ., 6 f in equation (4), the vector of the linear factors parameter 
 iβ  are considered as the random factor. They are also accompanied 
by prior assumptions. Diffuse priors are the suitable alternative for 
fixed effects parameters if there is no any prior knowledge [19-21]. 

For smooth, a second order random walk prior is selected. 
To define f , take the case of predictor x with equally spread 
out observations ix ,  1,... .i m= Let ( ) ( ) ( )1 ... ...t mx x x< < < <  
is an orderly sequence of distinct values where define ( )tf  as 

( )( )tf x  Furthermore, the second order random walk is given by 

( ) ( ) ( ) ( )2 1 2f t f t f t u t= − − − +  (5)
where ( ) ( )2~ 0,u t N τ is Gaussian errors. The diffuse priors 

can be given as ( )1 stf c∝ and ( )2 stf c∝ , for first values. A 

Variables Levels and coding
Region 1 = Amhara , 2 = Oromiya, 3 = SNNP
Main source of drinking water 1= Unprotected, 2 = protected, 3 = Tap water

Time  to collect water 1=<30 minutes, 2 = 30 to 40 minutes,
3 = 40 – 90 minutes, 4 = >90 minutes

Toilet  facilities 1 = No facility, 2 = pit latrine, 3 = toilet with flush
Availability  of electricity 1 = yes, 2 = no
Availability  of radio 1 = yes, 2 = no
Availability  of television 1 = yes, 2 = no

Main  material of the room's wall 
1 = cement block, 
2 = mud block/stick/wood, 
3 = corrugated metal

Main  material of the room's roof 1 = thatch, 2 = stick and mud, 3 = corrugate

Main  material of the room's floor 1 = earth/Local dung plaster, 
2 = wood, 3 = cement

Use  of indoor residual spray in 
the past twelve months 1 = yes, 2 = no

Use  of mosquito nets 1 = yes, 2 = no
Rapid Diagnosis test (RDT) 0 = Negative, 1= Positive
Age Continuous predictor
Family size Continuous predictor
Altitude Continuous predictor
Total number of rooms Continuous predictor
Total number of nets Continuous predictor
Number of months room sprayed Continuous predictor

Table 1: The description of predictor variable used in the model.
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second order random walk penalizes deviations from the linear trend 
( ) ( )2 1 2f t f t− − − . Hence, Markov random field prior is chosen for 

the spatially correlated effect strf  [22-25]. This prior indicates spatial 
neighborhood relationship which shows prior spatial neighborhood 
relationship. Accordingly, a spatial extension of the random walk 
model gives the conditional spatially autoregressive description 
[21,26-32]. This equation is given as follows.

( ) ( ) ( )
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where sN  is the number of neighboring kebele and 'k k∈
represents that kebele 'k is a neighbor of kebele k . Here, the 
assumption is that the influence of kebele k is conditionally Gaussian 
with expectation equals to the mean of the influence of neighboring 
kebele and a variance that is inversely proportional to the number 
of its neighbors sN  [33]. The conditional mean of ( )strf k  is 
an unweighted average of function evaluations of neighboring 
kebele. For the spatially uncorrelatated/unstructured effect, unstrf
as the common assumptions of Gaussian, are assumed to be i.i.d 
[27,30,32,34], i.e,

                 ( )2 2~ 0, .unstr unstr unstrf Nτ τ
Flexibility and smoothness of the trade-off is controlled by the 

variance parameter 2
jτ , 1,...,6,j =  str, unstr [22,26]. The values 

are unidentified and estimated with corresponding unidentified 
functions jf . For the variance 2

jτ , inverse Gamma hyper-prior 
( )2 ~ ,j j jIG a bτ are allocated to 2

jτ  
 
. Hence, the probability density 

function can be presented as 
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The bayesian inference is established on the posterior of the model. 
The analysis is investigated using MCMC simulation techniques. 
Therefore, equation (4), the predictor γ denotes the vector of all 
unidentified parameters. The conditional independence assumptions, 
the posterior of the model is presented as
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where, , 1,...,6,jf j =  strf  , unstrf are multivariate Gaussian. 
The MCMC simulation is implemented for consecutive draw of 

1 4,...,f f , strf , unstrf , 2 , 1,...,6j jτ =  from the full conditionals 
[27,30,31,34]. BayesX was used for the analysis. This software 
is public domain software for Bayesian inference in structured 
Additive Regression Models [35].

Results and discussion 
The objective of the study is to analyze the burden of malaria RDT 

result on covariates, such as socioeconomic, demographic, geographic 
covariates and spatial effects both correlated and uncorrelated in three 
regions of Ethiopia. The estimate for the linear effects parameters 
is presented in Table 2. As the value indicates, region (Amhara, 
Oromiya), source of drinking water (tap water), time to collect water 
(less than 30 minutes, between 30 and 40, between 40 and 90), toilet 
facility (pit latrine, toilet with flush), use of electricity (yes), use of radio 
(yes), material used for walls (mud blocks, corrugated), material used 
for floor (wood, cement) and use of indoor residual spray (yes) have 
a negative posterior mean. Therefore, these variables have negative 
relationship with malaria RDT result. In contrast, the rest variables, 
i.e., source of drinking water (unprotected), availability of television, 
material for floor (thatch, stick and mud) have a positive means. These 

variables are positively related to malaria RDT result. In general, Table 
2 shows that gender, source of drinking water, time to collect water, 
toilet facility, availability of television and radio, main roof material, 
main floor material and use of indoor residual spray have significant 
effects on malaria RDT result.

In Figure 1 the nonlinear factors of the model with 95% confidence 
interval is presented. Figure 1(A) indicates that malaria incidence in 
a given age, positive RDT result is increased for the first five years 
of life and then progressively decreased subsequently. Figure 1(B) 
displays the estimated smooth function for altitude. As can be seen 
from the figure, the malaria RDT result is increasing for the first 3000 
meters then starts to decline. Similarly, from the result, it was found 
that family size had the significant effect on malaria RDT test result. 
Figure 1(C) presented the estimated smooth function. The figure 

Parameter Mean OR
95% C.I.

Lower Upper

Region (Ref. SNNP)

Amhara -2.2778 0.1025 0.1875 1.2903

Oromia -1.1952 0.3026 0.3125 1.4346

Gender (Ref Male)

Female -2.1391 0.1178 0.0704 0.4962

Source of drinking water (Ref. Protected water)

Unprotected 1.4133 4.1095 4.0075 5.1115

Tap water -2.0848 0.1243 0.1024 0.1944

Time to collect water (Ref. Greater than 90 minutes)

Less than 30 minutes -5.2918 0.0050 0.0037 0.0261

Between 30 and 40 minutes -0.3973 0.6721 0.0419 0.9466

Between 40 and 90 minutes -0.6631 0.5153 0.5154 1.6151

Toilet Facility (Ref. No facility)

Pit Latrine -1.2573 0.2844 0.1046 0.5947

Toilet with flush -0.9087 0.4030 0.3028 0.9133

Availability of electricity (Ref. No)

Yes -0.8251 0.4382 0.2807 0.6835

Availability of television (Ref. No)

Yes 0.4655 1.5928 0.6219 1.9215

Availability of radio (Ref. No)

Yes -0.8655 0.4208 0.3167 0.7208

Main wall material (Ref. Cement)

Mud Blocks -0.3558 0.7006 0.4281 1.4409

Corrugated -0.5665 0.5675 0.3674 0.8676

Main roof material (Ref. Corrugated)

Thatch 1.9228 6.8401 2.5169 8.7183

Sticks and mud 0.7713 2.1626 1.8859 6.4886

Main floor material floor (Ref. Earth/local gung plaster)

Wood -0.7898 0.4539 0.3598 0.7541

Cement -0.6216 0.5371 0.4309 0.6537

Use of indoor residual spraying (ref. no)

Yes -0.7121 0.4906 0.2844 0.9882

Structured 2.2854   2.0852 3.2856

Unstructured 2.8002   2.2002 3.7801

Table 2: Estimate of the linear effects parameters using geo-additive models.
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suggested that household size is not linearly related with malaria RDT 
test result. In addition, total number of nets found to be nonlinearly 
related to malaria RDT result.

Figure 2 presents the posterior mean estimated values of the 
structured smooth spatial component and the unstructured which is 
also known random component maps of Amhara, Oromiya and SNNP 
regions of Ethiopia. The map for both structured and unstructured 
posterior mean estimates, the SNNP region is most affected by 
malaria followed by Amhara and Oromiya regions. In order to have 
a closer look at each region with regard to the distribution of malaria, 
Figures 2,34 and 4 are given to show the posterior mean estimates of 
the structured smooth spatial and the unstructured component for 
Amhara, Oromiya and SNNP regions of Ethiopia respectively.

Figure 3 presents the posterior mean estimates of the structured 
and unstructured component for Amhara region. It is clearly seen that 
there is a similar trend for structured and unstructured components; 
however, three zones (North Gondor, South Gondor and North 
Shewa) seem to exhibit different patterns between structured and 
unstructured components. As the figure indicates, the highest malaria 
is present in northern and southern Gondor. One of the reasons for 
this might be that the high-level population density in these zones. 
The other high risk exists in the southern, western and eastern parts 
of the Amhara region. For the unstructured component, however, 
the highest risk is seen in Northern Gondor followed by Southern 
Gondor. The smallest is in the northern Shewa zone of the Amhara 
region. 

Figure 4 depicts the posterior mean estimates of the structured 
and unstructured (random) component for Oromia region. The map 
shows the similar trend for structured and unstructured components, 
but some zones seem to present different patterns between structured 
and unstructured components. According to the figure, the highest 
malaria is present in the southern and eastern part of Oromoiya 
(Borena and East Harergie). The next highest malaria risk area is 
found at the central and Northern part of Oromiya region. In contrast, 
for the unstructured component, the highest risk is present in Borena, 
East Hagegrie and East Shewa zone of the Oromiya region. 

Figure 5 displays the posterior mean estimates of the structured 
and unstructured component for SNNP region. The map shows 
the similar trend for structured and unstructured components, but 
some zones seem to present different patterns between structured 
and unstructured components. As the figure indicates, the highest 
malaria is present in the south eastern part of the SNNP region 
(Burji) followed by the central and southern parts of the regions. The 
lowest malaria risk area is present at the western part of SNNP region 
(Northern Omo). But, for the unstructured component, the highest 
risk is present in the central part of the SNNP region. 

A clearer understanding of the presence of these differences is 
required concerning the highest malaria risks between zones of the 
Amhara, Oromiya and SNNP regions of Ethiopia. The produced 
maps from this work could be used for targeting Zones of the high 
risk of malaria with a view to initiating control policy. 

Conclusion 
Normally, malaria is referred to be disease of poverty [36] because 

it influences the poor who have limited access to health care [37]. 
Socioeconomic covariates are related to poverty. Therefore, it is 
significant to recognize the linkages between malaria and poverty. 

The result will be valuable to guide government policy-makers into 
creating and implementing more effective policies to tackle the 
disease [10,11]. 

In this study, semi-parametric models with spatial variations were 
implemented to model the effects of socioeconomic, demographic 
and geographic covariates and spatial effects on malaria distribution. 
The spatial analysis was implemented using geo-additive model where 
kebele was used as the geographic unit. In the analysis the spatial effect 
was divided into smooth structured and unstructured components. 
Statistical inference was made using bayesian method, and the analysis 
was based on Markov chain Monte Carlo techniques. The effect of 
socioeconomic, demographic and geographic covariates and the 
effects of other spatial determinants were estimated simultaneously.

This study identified the relationship between socioeconomic, 
demographic and geographic factors and malaria problems. The 
results reveal that malaria can be considered as a disease of poverty 
i.e., households who can have enough money to have proper toilet 
facilities, more number of rooms in the house, clean drinking water, 
and well built houses were found to be less affected by malaria. 
Moreover, our findings implied that households with more bed nets 
and sleeping rooms have good chance to reduce malaria. Women 
and children are also unprotected to mosquito bites while they are 
travelling long ways to get water. The study suggests that wealthier 
households were found to be less vulnerable to malaria than the poor 
households. Therefore, creating better living surroundings for the 
societies could be one way of reaching the malaria control goals set 
by the government.

Significant spatial patterns of malaria that are associated with 
socioeconomic, demographic, geographic and the spatial effects 
were identified in this study. High-rate malaria affected areas can be 
identified using spatial statistics analysis. This method is appropriate 
in monitoring and identifying malaria affected parts of the country. 
Using this result, policy makers can implement preventative strategies 
to eliminate the problem of malaria. Therefore, studies which 
account spatial variability are essential for planning the most suitable 
methodology for corrective action to decrease the danger of malaria 
in Ethiopia. 
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Figure 1: Nonlinear effects of the continuous covariates, with 95% confidence interval

 

 

 
a) Structured  b) Unstructured 

Figure 2: The posterior mean estimates of the structured smooth spatial component and the unstructured (ran¬dom) component.
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Figure 3: The posterior mean estimates of the structured smooth spatial component and the unstructured component for Amhara region.

 
Figure 4: The posterior mean estimates of the structured smooth spatial component and the unstructured component for Oromiya region.

 
Figure 5: The posterior mean estimates of the structured smooth spatial component and the unstructured component for SNNP region.
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